## ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

ЧЕЛЯБИНСКИЙ ФИЛИАЛ

Кафедра экономики, финансов и бухгалтерского учета

# КОМПЬЮТЕРНЫЙ ПРАКТИКУМ ПО ЭКОНОМЕТРИКЕ

Методические указания по проведению лабораторной работы «Описательная статистика» УДК 372.851 ББК 22.172 Д32

> Дза Демьянов Д.Г. Компьютерный практикум по эконометрике: методические указания по проведению лабораторной работы «Описательная статистика». Челябинск: Челябинский филиал РАНХиГС, 2017. – 30 с.

Компьютерный практикум по эконометрике содержит расчетно-графические работы по отдельным вопросам эконометрического моделирования в электронных таблицах MS Excel.

Учебно-методическое издание направлено на овладение компетенции ОПК-1 «Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий и с учетом основных требований информационной безопасности».

Для студентов направления подготовки 38.03.01 Экономика, очной и заочной форм обучения.

#### Введение

Профессиональная деятельность экономиста С связана необходимостью не только качественного описания существующих и возникающих тенденций развития экономических процессов, но и их количественной оценки, анализа и прогнозирования последствий на основе статистических данных. Решение этой задачи требует владения определенных компетенций в сфере информационно-коммуникационных обработку технологий, направленных на И анализ социальноэкономической информации.

Эконометрика, как научная дисциплина формирует определенную информационную культуру, позволяющую будущему экономисту сформировать цифровые навыки проведения статистического анализа и построения эконометрических моделей с использованием прикладных компьютерных программ.

Выбор электронных таблиц MS Excel обусловлен его широким распространением, доступностью и наличием большого набора инструментов для проведения статистического анализа и выполнения математических операций при решении большинства задач эконометрики.

Практикум содержит необходимые краткие теоретические сведения, содержание и этапы выполнения расчетно-графической работы, образец решения типовой задачи в MS Excel с необходимыми пояснениями выполняемых действий и описания диалоговых окон, контрольные вопросы по теме работы.

#### Содержательная часть вариантов

1. Оценить закон распределения и числовые характеристики генеральной совокупности – затраты на технологические инновации (млн руб.). Параметры выборки представлены в таблице 1.

 Оценить закон распределения и числовые характеристики генеральной совокупности – расхода бензина (литров) на 100 км.
 в городском цикле для автомобилей одной модели. Параметры выборки представлены в таблице 1.

 Оценить закон распределения и числовые характеристики генеральной совокупности – времени выполнения одной операции (мин.) рабочими. Параметры выборки представлены в таблице 1.

 Оценить закон распределения и числовые характеристики генеральной совокупности – суточных надоев молока (литров) от одной коровы. Параметры выборки представлены в таблице 1.

5. Оценить закон распределения и числовые характеристики генеральной совокупности – времени (мин.) затрачиваемого на поездку от дома до работы. Параметры выборки представлены в таблице 1.

6. Оценить закон распределения и числовые характеристики генеральной совокупности – месячной заработной платы (тыс. руб.) рабочих одной профессии. Параметры выборки представлены в таблице 1.

7. Оценить закон распределения и числовые характеристики генеральной совокупности – расход топлива (литров) на 100 км автомобилем «Урал». Параметры выборки представлены в таблице 1.

8. Оценить закон распределения и числовые характеристики генеральной совокупности – стоимости (тыс. руб.) квадратного метра жилья на вторичном рынке. Параметры выборки представлены в таблице 1.

9. Оценить закон распределения и числовые характеристики генеральной совокупности – количества клиентов (чел.) обслуживаемых за смену одним мастером. Параметры выборки представлены в таблице 1.

10. Оценить закон распределения и числовые характеристики генеральной совокупности – объема недельных продаж бензина АИ-92 (тонн). Параметры выборки представлены в таблице 1.

11. Оценить закон распределения и числовые характеристики генеральной совокупности – производительности труда (тыс. руб.) рабочих одной профессии. Параметры выборки представлены в таблице 1.

12. Оценить закон распределения и числовые характеристики генеральной совокупности – суточного объема продаж (тыс. руб.) цветочных киосков. Параметры выборки представлены в таблице 1.

13. Оценить закон распределения и числовые характеристики генеральной совокупности – уровня использования среднегодовой производственной мощности организаций по выпуску текстильной продукции (в процентах). Параметры выборки представлены в таблице 1.

14. Оценить закон распределения и числовые характеристики генеральной совокупности – производство основных видов продукции в натуральном выражении (тыс. т.). Параметры выборки представлены в таблице 1.

15. Оценить закон распределения и числовые характеристики генеральной совокупности – потребление электроэнергии в Уральском федеральном округе (млн кВт. час). Параметры выборки представлены в таблице 1.

16. Оценить закон распределения и числовые характеристики генеральной совокупности – действующих строительных организаций (тыс. ед.). Параметры выборки представлены в таблице 1.

17. Оценить закон распределения и числовые характеристики генеральной совокупности – средние потребительские цены (руб.) на отдельные товары и услуги. Параметры выборки представлены в таблице 1.

18. Оценить закон распределения и числовые характеристики генеральной совокупности – уровень занятости в Уральском федеральном округе (в процентах). Параметры выборки представлены в таблице 1.

19. Оценить закон распределения и числовые характеристики генеральной совокупности – прирост высокопроизводительных рабочих мест (тыс. ед.). Параметры выборки представлены в таблице 1.

20. Оценить закон распределения и числовые характеристики генеральной совокупности – производство продуктов животноводства (тыс. штук). Параметры выборки представлены в таблице 1.

21. Оценить закон распределения и числовые характеристики генеральной совокупности – выбросы в атмосферу загрязняющих веществ (тыс. т.). Параметры выборки представлены в таблице 1.

22. Оценить закон распределения и числовые характеристики генеральной совокупности – степень износа основных фондов на конец года (в процентах). Параметры выборки представлены в таблице 1.

23. Оценить закон распределения и числовые характеристики генеральной совокупности – выплаты по договорам страхования, осуществленные страховщиками (млн руб.). Параметры выборки представлены в таблице 1.

24. Оценить закон распределения и числовые характеристики генеральной совокупности – убыток страховых организаций (млрд руб.). Параметры выборки представлены в таблице 1.

25. Оценить закон распределения и числовые характеристики генеральной совокупности – зарегистрированный уставный капитал действующих кредитных организаций (млрд руб.). Параметры выборки представлены в таблице 1.

| Номер<br>варианта | Параметр А<br>размах выборочных<br>данных | Параметр В | Параметр С | Объем<br>выборки |
|-------------------|-------------------------------------------|------------|------------|------------------|
| 1.                | 51 – 264                                  | 0,5        | 0,1        | 210              |
| 2.                | 7 – 12                                    | 0,5        | 0,1        | 190              |
| 3.                | 7 – 14                                    | 0,5        | 0,1        | 230              |
| 4.                | 5 – 21                                    | 0,5        | 0,1        | 250              |
| 5.                | 18 – 34                                   | 0,5        | 0,1        | 220              |
| 6.                | 15 – 29                                   | 0,5        | 0,1        | 210              |
| 7.                | 29 – 61                                   | 0,5        | 0,1        | 190              |
| 8.                | 19 – 69                                   | 0,5        | 0,1        | 230              |
| 9.                | 19 – 40                                   | 0,5        | 0,1        | 250              |
| 10.               | 8 – 19                                    | 0,5        | 0,1        | 220              |
| 11.               | 20 – 39                                   | 0,5        | 0,1        | 210              |
| 12.               | 9 – 17                                    | 0,5        | 0,1        | 190              |
| 13.               | 31 – 89                                   | 0,5        | 0,1        | 230              |
| 14.               | 75 - 153                                  | 0,5        | 0,1        | 250              |
| 15.               | 4206 – 98041                              | 0,5        | 0,1        | 220              |
| 16.               | 115 – 268                                 | 0,5        | 0,1        | 210              |
| 17.               | 500 – 2100                                | 0,5        | 0,1        | 190              |
| 18.               | 49 – 87                                   | 0,5        | 0,1        | 230              |
| 19.               | 15 – 89                                   | 0,5        | 0,1        | 250              |
| 20.               | 49 – 102                                  | 0,5        | 0,1        | 220              |
| 21.               | 134 – 512                                 | 0,5        | 0,1        | 210              |
| 22.               | 19 – 64                                   | 0,5        | 0,1        | 190              |
| 23.               | 961 – 57354                               | 0,5        | 0,1        | 230              |
| 24.               | 1 – 37                                    | 0,5        | 0,1        | 250              |
| 25.               | 380 – 1463                                | 0,5        | 0,1        | 220              |

# Таблица 1 – Данные для расчетной части

#### Пример выполнения работы

#### Условие задачи

Оценить закон распределения и числовые характеристики генеральной совокупности – объем инновационных товаров (млн руб.). Если известно, что вариационный размах выборки составляет диапазон от 17 до 65 млн руб., параметры выборки C=0,5 и D=0,1.

Исходя из значений вариационного размаха выборки, сформировать выборочные данные.

По полученной выборке значений изучаемого признака генеральной совокупности:

1. Построить вариационный ряд.

2. На основе данных вариационного ряда построить интервальный вариационный ряд.

3. По данным интервального вариационного ряда построить кумулятивную кривую и гистограмму частот.

4. Рассчитать числовые характеристики по данным вариационного ряда.

5. На уровне значимости  $\alpha = 0,05$  проверить гипотезу о нормальном распределении генеральной совокупности.

6. Написать заключение о проведенном исследовании свойств генеральной совокупности.

## Порядок выполнения работы

В MS Excel создать книгу с названием **Фамилия\_группа**, например, **Иванов\_4-14**.

## 1. Генерирование выборочных данных

1. В ячейках первых двух строк прописываем заголовки «шапки» расчетной таблицы (рис. 1).

|   | Α  | В                   | С                   | D                        | E       | F                | G                 | Н                          |               | 1                             | J                         | К                      |  |
|---|----|---------------------|---------------------|--------------------------|---------|------------------|-------------------|----------------------------|---------------|-------------------------------|---------------------------|------------------------|--|
| 1 |    |                     |                     | Вариационнь              | ій ряд  |                  |                   |                            | Инте          | Интервальный вариационный ряд |                           |                        |  |
| 2 | Nº | Значения<br>выборки | Фиксация<br>выборки | Упорядоченная<br>выборка | Частота | Шаг<br>интервала | Границ<br>интерва | ца Диапазо<br>ила интервал | он<br>10в     | Частота                       | Отностительная<br>частота | Накопленная<br>частота |  |
| 3 | 1  | 83,72               | 80,55               | 49,35                    | 1       | 9,45             | 44,6              | 62 [44,62 - 54             | 1,07]         | 5                             | 0,025                     | 5                      |  |
|   |    |                     |                     |                          |         |                  | _                 |                            |               |                               |                           |                        |  |
|   |    |                     |                     |                          |         |                  |                   | L                          |               | Μ                             | N                         | 0                      |  |
|   |    |                     |                     |                          |         |                  |                   |                            |               | Расчет кр                     | итерия Пирсона хи         | -квадрат               |  |
|   |    |                     |                     |                          |         |                  | Γ                 | Относительные              | Теоретические |                               | Теоретические             | Слагаемые              |  |
|   |    |                     |                     |                          |         |                  |                   | накопленные                |               |                               | частоты                   | критерия               |  |
|   |    |                     |                     |                          |         |                  |                   | частоты                    | Беро          | лиости                        | Ider of Bi                | Пирсона                |  |
|   |    |                     |                     |                          |         |                  |                   | 0,025                      | 0,            | 0107                          | 2,1324                    | 3,8561                 |  |

Рисунок 1 – «Шапка» расчетной таблицы

2. В ячейке АЗ вводим значение 1. В активной ячейке АЗ вызываем

функцию Прогрессия. Она расположена на вкладке Главная / Редактирование. В диалоговом окне устанавливаем значения

как на рисунке 2.

| Прогрессия                                                                                                                                                                                                                                   |                  | ? ×                                          | Γ       |                                           |     |                                                                                                    |                              |   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|---------|-------------------------------------------|-----|----------------------------------------------------------------------------------------------------|------------------------------|---|--|
| Расположение<br>По строкам<br>По стодбцам<br>По стодбцам | кая ©            | ницы<br>день<br>рабочий день<br>месяц<br>год | :-<br>* | Зставить<br>/далить<br>Формат ч<br>Ічейки | Σ   | ят (<br>В <u>н</u> из<br>Вправ <u>о</u>                                                            | <sup>22</sup> ти и<br>1ить т |   |  |
| Шаг: 1 Предельное з                                                                                                                                                                                                                          | начение: 2<br>ОК | 200<br>Отмена                                | L       |                                           | M 🔄 | <u>в</u> верх<br>В <u>л</u> ево<br>По лис <u>т</u> ам<br>Про <u>г</u> рессия<br>В <u>ы</u> ровнять | P                            | Q |  |

Рисунок 2 – Параметры Прогрессии

В результате работы функции **Прогрессия** столбец А заполнится числами от 1 до 200.

2. Чтобы сформировать выборку данных, в ячейке ВЗ напишем формулу

```
=<mark>А</mark>*НОРМОБР(СЛЧИС();B;C)
```

где А, В, С – соответствуют номеру варианта (табл. 1).

Нажмите F9, убедитесь, что в ячейке B3 генерируются случайные значения.

Синтаксис функции <u>НОРМОБР</u>, <u>СЛЧИС</u> и <u>ОКРУГЛ</u>

Установим точность значений до двух знаков после запятой с помощью функции **ОКРУГЛ**.

Для заполнения последующих 199 ячеек выборочными данными воспользуемся инструментом Excel – Таблица данных (Таблица подстановки). Таблица данных относится к группе инструментов Анализ что если, которая размещена на ленте во вкладке Данные в блоке Работа с данными.

Выделяем диапазон ячеек АЗ:В202

Вызываем диалог Таблица данных

| Таблица данных                               | ? 🔀    |
|----------------------------------------------|--------|
| Подставлять значения по ст <u>о</u> лбцам в: |        |
| Подставлять значения по ст <u>р</u> окам в:  |        |
| ОК                                           | Отмена |

В поле **Подставлять значения по строкам** указать на любую пустую ячейку, нажать ОК. Столбец В заполнится случайными значениями из диапазона от 17 до 65.

### Альтернативный вариант формирования выборки

В активной ячейке ВЗ захватить мышью в нижнем правом углу маркер, как показано на рисунке 3, и «протащить» формулу вниз, заполнив 200 ячеек столбца В.

| A | А  | В                   | С                   | D                        | E       |  |
|---|----|---------------------|---------------------|--------------------------|---------|--|
| 1 |    |                     |                     | Вариационнь              | ый ряд  |  |
| 2 | NՉ | Значения<br>выборки | Фиксация<br>выборки | Упорядоченная<br>выборка | Частота |  |
| 3 | 1  | 36,08715116         |                     |                          |         |  |
| 4 | 2  |                     |                     |                          |         |  |

Рисунок 3 – Копирование формулы

3. При выполнении каких-либо действий на рабочем листе, значения ячеек в столбце В постоянно пересчитываются. В силу этого каждый раз будут появляться новые выборки с различными числовыми характеристиками. Чтобы не потерять исходные выборочные данные их нужно зафиксировать.

Выделяем значения выборки в столбце В, для этого делаем ячейку В2 активной, переходим в конец выборки, удерживаем Shift и кликаем по последней ячейке выборки. Копируем выделенный диапазон (Ctrl+C). Переходим в ячейку СЗ и с помощью команды специальной вставки (Ctrl+Alt+V) вставляем скопированные значения выборки (рис. 4).

| Специальная вставка                 | <u>१</u> ×                         |  |  |  |  |  |
|-------------------------------------|------------------------------------|--|--|--|--|--|
| Вставить                            |                                    |  |  |  |  |  |
| 🔘 вс <u>е</u>                       | 🔘 с ис <u>х</u> одной темой        |  |  |  |  |  |
| © <u>ф</u> ормулы                   | 🔘 без рам <u>к</u> и               |  |  |  |  |  |
| • значения                          | 🔘 <u>ш</u> ирины столбцов          |  |  |  |  |  |
| форматы                             | 🔘 форму <u>л</u> ы и форматы чисел |  |  |  |  |  |
| примечания значения и форматы чисел |                                    |  |  |  |  |  |
| 🔘 условия на значения               | 🔘 все условные форматы объединения |  |  |  |  |  |
| Операция                            |                                    |  |  |  |  |  |
| <u>ө н</u> ет                       | умножить                           |  |  |  |  |  |
| © сло <u>ж</u> ить                  | <u>р</u> азделить                  |  |  |  |  |  |
| © в <u>ы</u> честь                  |                                    |  |  |  |  |  |
| пропускать пустые ячейки            | транспонировать                    |  |  |  |  |  |
| Вставить связь                      | ОК Отмена                          |  |  |  |  |  |

Рисунок 4 – Диалоговое окно специальной вставки

## 2. Построение вариационного ряда

### 1. Вариационный ряд

Теперь когда выборочные данные зафиксированы, преобразуем их в вариационный ряд.

Выборочные данные, упорядоченные по возрастанию или убыванию, называются вариационным рядом. Различные значения исследуемого признака в выборке называются вариантами.

Для построения вариационного ряда скопируем выборочные данные столбца С в столбец D. Поскольку в ячейках столбца С находятся числовые значения, то при их копировании можно использовать сочетания Ctrl+C и Ctrl+V. После копирования выделяем выборочные данные столбца D и сортируем их по возрастанию.

## 2. Точечный вариационный ряд

Упорядоченная по возрастанию или убыванию последовательность вариант  $x_i$  с указанием частот  $n_i$  (или относительной частоты  $\frac{n_i}{n}$ ) их повторения в выборке называется точечным вариационным рядом.

Для построения точечного вариационного ряда с частотами, в ячейке Е2 напишем формулу

## =СЧЁТЕСЛИ(\$D\$2:\$D\$201;D2)

и «протянем» ее до конца диапазона. В результате станет понятно какие значения и сколько раз повторяются в выборке.



Синтаксис функции СЧЁТЕСЛИ

## 3. Интервальный вариационный ряд

Поскольку выборные данные содержат большое количество вариант, по которым достаточно сложно судить об изменчивости их значений, то от точечного вариационного ряда перейдем к интервальному вариационному ряду.

Интервальный вариационный ряд упорядоченная — ЭТО последовательность интервалов с указанием частоты  $n_i$ каждого интервала. равной количеству выборочных попавших данных В рассматриваемый интервал.

Рекомендуемое количество интервалов *k* определяется как **натуральное** число по формуле Стерджесса

$$k \approx 1 + 3,222 \cdot \lg n,\tag{1}$$

где *n* – объем выборки.

Длина h интервала определяется по формуле

$$h = \frac{x_{\max} - x_{\min}}{k}, \qquad (2)$$

где  $x_{\max}$ ,  $x_{\min}$  – наибольшее и наименьшее значения в выборке.

Границы интервалов ( $C_{i-1}; C_i$ ) определяются следующим образом:

$$C_0 = x_{\min} - \frac{h}{2}, \ C_1 = C_0 + h, \ \dots, C_k = C_{k-1} + h$$
 (3)

Для построения интервального вариационного ряда определим шаг интервала используя формулу (2).

В ячейке F2 напишем формулу

значения которой будут определять границы интервалов.

Синтаксис функции <u>ЦЕЛОЕ, LOG10</u>

Диапазон интервалов разместим в столбце Н. Для записи интервалов в общепринятом математическом стиле воспользуемся оператором конкатенации, позволяющим объединить несколько данных в одну ячейку. Excel, в качестве оператора конкатенации, применяет символ амперсанда – &.

Сначала в столбце G сформируем значения левой границы интервала. Для этого в соответствии с выражением (3) в ячейке G3 напишем формулу

=ОКРУГЛ(D3-F3/2;2),

а в ячейке G4

Ячейку G4 делаем активной, захватываем мышкой нижний правый маркер и «протягиваем» формулу вниз до первого значения превосходящего максимального значения вариационного ряда.

В ячейке Н4 напишем формулу для первого диапазона

Далее делаем ячейку H4 активной и «протягиваем» формулу до предпоследнего значения (рис. 5).

|    | Α                     | В     | C                   | D                        | E       | F                | G                    | н                      | I        |
|----|-----------------------|-------|---------------------|--------------------------|---------|------------------|----------------------|------------------------|----------|
| 1  |                       |       |                     | Вариационнь              | ій ряд  |                  |                      | Инте                   | ервальнь |
| 2  | № Значения<br>выборки |       | Фиксация<br>выборки | Упорядоченная<br>выборка | Частота | Шаг<br>интервала | Граница<br>интервала | Диапазон<br>интервалов | Частота  |
| 3  | 1                     | 41,37 | 37,54               | 28,49                    | 1       | 3,32             | 26,83                | [26,83 - 30,15]        |          |
| 4  | 2                     | 34,35 | 40,07               | 30,03                    | 1       |                  | 30,15                | [30,15 - 33,47]        |          |
| 5  | 3                     | 36,29 | 48,97               | 30,83                    | 1       |                  | 33,47                | [33,47 - 36,79]        |          |
| 6  | 4                     | 47,13 | 45,84               | 30,87                    | 1       |                  | 36,79                | [36,79 - 40,11]        |          |
| 7  | 5                     | 32,25 | 42,64               | 31,05                    | 1       |                  | 40,11                | [40,11 - 43,43]        |          |
| 8  | 6                     | 42,3  | 38,17               | 31,26                    | 1       |                  | 43,43                | [43,43 - 46,75]        |          |
| 9  | 7                     | 40,36 | 45,83               | 31,3                     | 1       |                  | 46,75                | [46,75 - 50,07]        |          |
| 10 | 8                     | 41,58 | 39,27               | 32,12                    | 1       |                  | 50,07                | [50,07 - 53,39]        |          |
| 11 | 9                     | 41,1  | 44,2                | 32,14                    | 1       |                  | 53,39                | [53,39 - 56,71]        |          |
| 12 | 10                    | 38,24 | 44,98               | 32,62                    | 1       |                  | 56,71                | Bcero                  | 0        |
|    |                       | 22.0  |                     |                          |         | l '              |                      |                        |          |

Рисунок 5 – Интервальный вариационный ряд

Для определения частот (количество вариант, попадающих в соответствующий интервал) воспользуемся функцией **ЧАСТОТА**.



Функция **ЧАСТОТА** вводится как формула массива после выделения диапазона, это означает, что после ввода формулы необходимо вместо нажатия клавиши ENTER нажать сочетание клавиш **CTRL+SHIFT+ENTER**.

В столбце I выделяем диапазон ячеек равный количеству интервалов. Переходим в строку формул и записываем формулу (рис. 6)

после этого нажимаем сочетание клавиш CTRL+SHIFT+ENTER.

*Важно!* Первая граница интервала (ячейка G3) не включается в массив интервалов в формуле (4). В разных вариантах, границы диапазонов в формуле (4) могут отличаться.

| C     | умм | <b>•</b>            | ×v                  | <i>f<sub>∞</sub></i> =4A0 | CTOTA(D | 3:D202 <mark>;G4:G</mark> | 612)                 |                        |         |
|-------|-----|---------------------|---------------------|---------------------------|---------|---------------------------|----------------------|------------------------|---------|
| A B C |     | С                   | D                   | E                         | F       | G                         | н                    | I                      |         |
| 1     |     |                     |                     | Вариационнь               | ій ряд  |                           | Интервальны          |                        |         |
| 2     | N≘  | Значения<br>выборки | Фиксация<br>выборки | Упорядоченная<br>выборка  | Частота | Шаг<br>интервала          | Граница<br>интервала | Диапазон<br>интервалов | Частота |
| 3     | 1   | 46,44               | 37,54               | 28,49                     | 1       | 3,32                      | 26,83                | [26,83 - 30,15]        | 34:G12) |
| 4     | 2   | 45,66               | 40,07               | 30,03                     | 1       |                           | 30,15                | [30,15 - 33,47]        |         |
| 5     | 3   | 37,07               | 48,97               | 30,83                     | 1       |                           | 33,47                | [33,47 - 36,79]        |         |
| 6     | 4   | 47,95               | 45,84               | 30,87                     | 1       |                           | 36,79                | [36,79 - 40,11]        |         |
| 7     | 5   | 43,67               | 42,64               | 31,05                     | 1       |                           | 40,11                | [40,11 - 43,43]        |         |
| 8     | 6   | 48,97               | 38,17               | 31,26                     | 1       |                           | 43,43                | [43,43 - 46,75]        |         |
| 9     | 7   | 46,55               | 45,83               | 31,3                      | 1       |                           | 46,75                | [46,75 - 50,07]        |         |
| 10    | 8   | 45,92               | 39,27               | 32,12                     | 1       |                           | 50,07                | [50,07 - 53,39]        |         |
| 11    | 9   | 28,25               | 44,2                | 32,14                     | 1       |                           | 53,39                | [53,39 - 56,71]        |         |
| 12    | 10  | 37,48               | 44,98               | 32,62                     | 1       |                           | 56,71                | Bcero                  | 0       |
| 13    | 11  | 46,71               | 43,37               | 32,82                     | 1       | '                         |                      |                        |         |

Рисунок 6 – Формирование диапазона частот

В качестве контроля промежуточных вычислений подсчитаем количество частот (рис. 7), проверяя, что все варианты вариационного ряда учтены. Сумма частот должна совпадать с объемом выборки.

| A  | Α  | В                   | С                   | D                                   | E      | F                | G                    | н                      | I         |
|----|----|---------------------|---------------------|-------------------------------------|--------|------------------|----------------------|------------------------|-----------|
| 1  |    |                     |                     | Вариационнь                         | ій ряд |                  |                      | Инте                   | ервальный |
| 2  | N≘ | Значения<br>выборки | Фиксация<br>выборки | Упорядоченная<br>выборка Частота ин |        | Шаг<br>интервала | Граница<br>интервала | Диапазон<br>интервалов | Частота   |
| 3  | 1  | 39,99               | 37,54               | 28,49                               | 1      | 3,32             | 26,83                | [26,83 - 30,15]        | 2         |
| 4  | 2  | 36,81               | 40,07               | 30,03                               | 1      |                  | 30,15                | [30,15 - 33,47]        | 10        |
| 5  | 3  | 43,52               | 48,97               | 30,83                               | 1      |                  | 33,47                | [33,47 - 36,79]        | 24        |
| 6  | 4  | 35,01               | 45,84               | 30,87                               | 1      |                  | 36,79                | [36,79 - 40,11]        | 49        |
| 7  | 5  | 29,67               | 42,64               | 31,05                               | 1      |                  | 40,11                | [40,11 - 43,43]        | 48        |
| 8  | 6  | 40,64               | 38,17               | 31,26                               | 1      |                  | 43,43                | [43,43 - 46,75]        | 40        |
| 9  | 7  | 45,41               | 45,83               | 31,3                                | 1      |                  | 46,75                | [46,75 - 50,07]        | 21        |
| 10 | 8  | 45,99               | 39,27               | 32,12                               | 1      |                  | 50,07                | [50,07 - 53,39]        | 4         |
| 11 | 9  | 47,18               | 44,2                | 32,14                               | 1      |                  | 53,39                | [53,39 - 56,71]        | 2         |
| 12 | 10 | 49,21               | 44,98               | 32,62                               | 1      |                  | 56,71                | Bcero                  | 200       |
| 13 | 11 | 39,9                | 43,37               | 32,82                               | 1      | '                |                      |                        |           |

Рисунок 7 – Контроль учета вариант вариационного ряда

Полученный интервальный вариационный ряд дополним данными об относительных частотах, накопленных частотах и относительных накопленных частотах (рис. 8).

| G                    | н                      | I        | J                         | К                      | L                                       |
|----------------------|------------------------|----------|---------------------------|------------------------|-----------------------------------------|
|                      | Инте                   | ервальны | ій вариационный           | ряд                    |                                         |
| Граница<br>интервала | Диапазон<br>интервалов | Частота  | Отностительная<br>частота | Накопленная<br>частота | Относительные<br>накопленные<br>частоты |
| 26,83                | [26,83 - 30,15]        | 2        | 0,01                      | 2                      | 0,01                                    |
| 30,15                | [30,15 - 33,47]        | 10       | 0,05                      | 12                     | 0,06                                    |
| 33,47                | [33,47 - 36,79]        | 24       | 0,12                      | 36                     | 0,18                                    |
| 36,79                | [36,79 - 40,11]        | 49       | 0,245                     | 85                     | 0,425                                   |
| 40,11                | [40,11 - 43,43]        | 48       | 0,24                      | 133                    | 0,665                                   |
| 43,43                | [43,43 - 46,75]        | 40       | 0,2                       | 173                    | 0,865                                   |
| 46,75                | [46,75 - 50,07]        | 21       | 0,105                     | 194                    | 0,97                                    |
| 50,07                | [50,07 - 53,39]        | 4        | 0,02                      | 198                    | 0,99                                    |
| 53,39                | [53,39 - 56,71]        | 2        | 0,01                      | 200                    | 1                                       |
| 56,71                | Bcero                  | 200      | 1                         |                        |                                         |

Рисунок 8 – Интервальный вариационный ряд

Значения относительных частот определяются по формуле  $\frac{n_i}{n}$ , где  $n_i$  – частота *i* -го интервала, n – объем выборки.

Сумма относительных частот всегда равна единице.

Значения накопленных частот определяются по формуле

$$m_i = n_1 + n_2 + \ldots + n_i$$
 (5)

а относительные накопленные частоты интервалов –  $\frac{m_i}{n}$ .

#### 4. Графический анализ вариационных рядов

Анализ вариационных рядов и определение формы распределения выборочных данных проводится на основе графического анализа полигона частот, гистограммы частот и кумулятивной кривой.

Вариационные ряды и их графические изображения представляют эмпирическое (выборочное) распределение исследуемого признака генеральной совокупности.

Гистограмма частот строится по интервальному вариационному ряду и представляет собой ступенчатую фигуру на плоскости, состоящую из прямоугольников основаниями которых служат интервалы, а высоты равны частотам или относительным частотам этих интервалов.

Кумулятивная кривая (кумулята) – это кривая относительных накопленных частот (или накопленных частот), строится по точеному вариационному ряду (или интервальному вариационному ряду) и представляет собой плавную линию, проходящую через середины интервалов с высотами равными относительным накопленным частотам этих интервалов.

На основе данных интервального вариационного ряда строим гистограмму частот и кумуляту распределения (рис. 9).





# Рисунок 9 – Графическое представление вариационного ряда

#### 3. Числовые характеристики выборки

Для одновременного нахождения всех числовых характеристик выборочных данных воспользуемся инструментом анализа Описательная статистика (рис. 10). Доступ к данному инструменту осуществляется по вкладкам:

### Данные — Анализ — Анализ данных — Описательная статистика



#### Примечание

Если надстройка Анализ данных не подключена, необходимо выполнить следующие действия: Файл → Параметры → Надстройки → Управление (Перейти) → Пакет анализа данных → Ок

| Инструменты анализа                                 | _        |       |
|-----------------------------------------------------|----------|-------|
| <u>encryymentor analysia</u>                        | _        | OK    |
| Двухфакторный дисперсионный анализ с повторениями 🖌 |          |       |
| Двухфакторный дисперсионный анализ без повторений 📃 | 01       | гмена |
| Корреляция                                          |          |       |
| Ковариация                                          |          |       |
| Описательная статистика                             | <u> </u> | равка |
| Экспоненциальное сглаживание                        |          |       |
| Двухвыборочный F-тест для дисперсии                 |          |       |
| Анализ Фурье                                        |          |       |
| Гистограмма                                         |          |       |
| Скользящее среднее                                  | -        |       |

Рисунок 10 – Диалоговое окно «Анализ данных»

В диалоговом окне описательной статистики установить флажки в элементах управления окна, как показано на рисунке 11.

| - | Описательная статистика                                                                                                                                                               | 4 8             | ? X                             |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|
|   | Входные данные<br>В <u>х</u> одной интервал:<br>Группирование:                                                                                                                        | \$D\$3:\$D\$202 | ОК<br>Отмена<br><u>С</u> правка |
|   | <ul> <li><u>М</u>етки в первои строке</li> <li>Параметры вывода</li> <li>В<u>ы</u>ходной интервал:</li> <li>Новый рабочий <u>л</u>ист:</li> <li>Новая рабочая <u>к</u>нига</li> </ul> | SK\$52          |                                 |
|   | ✓ Итоговая статистика ✓ Уровень надежности: К-ый наименьший: К-ый наибольший:                                                                                                         | 95 %<br>1<br>1  |                                 |

Рисунок 11 – Диалоговое окно «Описательная статистика»

В поле **Входной интервал** указывается диапазон ячеек с выборочными данными (столбец D).

В поле Выходной интервал указать любую ячейку ниже графиков гистограммы и кумуляты.

В результате расчетов инструмента анализа Описательная статистика появится таблица (рис. 12).

| G                         | Н | I        |
|---------------------------|---|----------|
|                           |   |          |
| Столбец1                  |   |          |
|                           |   |          |
| Среднее                   |   | 41,2415  |
| Стандартная ошибка        |   | 0,358147 |
| Медиана                   |   | 41,28    |
| Мода                      |   | 33,71    |
| Стандартное отклонение    |   | 5,064965 |
| Дисперсия выборки         |   | 25,65387 |
| Эксцесс                   |   | -0,22188 |
| Асимметричность           |   | -0,0162  |
| Интервал                  |   | 26,52    |
| Минимум                   |   | 28,49    |
| Максимум                  |   | 55,01    |
| Сумма                     |   | 8248,3   |
| Счет                      |   | 200      |
| Уровень надежности(95,0%) |   | 0,706251 |

Рисунок 12 – Числовые характеристики выборки

Показатели столбца 1 в таблице описательной статистики (рис. 12) характеризуют:

#### 1. Положение выборки

Это средние величины, определяющие положение выборки на числовой оси одним числом, вокруг которого концентрируются выборочные данные. Наиболее распространенными характеристиками положения являются:

- среднее – выборочная средняя;

- медиана – медиана выборки (значение признака, приходящее на середину вариационного ряда (выборочных значений, упорядоченных по

возрастанию), т.е. медиана выборки делит выборку на две части равные по частоте);

- мода – мода выборки (варианта с наибольшей частотой).

#### 2. Вариацию выборки

Вариации (рассеяния) выборки описывают изменчивость значений изучаемого признака. Наиболее распространенными характеристиками вариации являются:

- дисперсия выборки – исправленная выборочная дисперсия;

- *стандартная ошибка* – среднее квадратическое отклонение выборочной средней;

- *стандартное отклонение* – исправленное выборочное среднее квадратическое отклонение;

- интервал – вариационный размах (разность между наибольшим и наименьшим значением в выборочных данных).

#### 3. Форму распределения выборки

- эксцесс – показатель «крутости» распределения выборки по сравнению с нормальным распределением;

– асимметричность – мера отклонения распределения выборки от симметричного, при  $\tilde{A} = 0$  распределение выборки (полигон частот, гистограмма частот) симметрично относительно прямой  $x = \overline{x}$ , при  $\tilde{A} > 0$   $(\tilde{A} < 0)$  распределение выборки имеет более пологую правую (левую) часть).

### 4. Дополнительные показатели выборки

- минимум наименьшее значение в выборке данных;
- максимум наибольшее значение в выборке данных;
- сумма сумма всех выборочных данных;
- *счет* объем выборочных данных.

## 4. Проверка гипотезы о нормальном распределении генеральной совокупности по критерию согласия Пирсона

Критерий согласия Пирсона  $\chi^2$  (хи-квадрат) проверяет значимость расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот.

В соответствии с критерием проверяется нулевая гипотеза  $H_0: X \sim N(a, \sigma)$  о нормальном распределении генеральной совокупности (случайной величины *X* – объем инновационных товаров). Параметры *а* (математическое ожидание) и  $\sigma$  (среднее квадратическое отклонение) Зa ИХ значения неизвестны. принимаются ИХ несмещенные И состоятельные оценки: выборочная средняя  $\overline{x}$ И исправленное выборочное среднее квадратическое отклонение  $s = \sqrt{S^2}$ . Таким образом, проверяется нулевая гипотеза  $H_0: X \sim N(\overline{x}, s)$ . Для проверки этой гипотезы используется статистика критерия

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - n \cdot p_{i})^{2}}{n \cdot p_{i}},$$
(6)

которая является мерой расхождения теоретического распределения  $N(\overline{x},s)$  и эмпирического распределения представленного точечным или интервальным вариационным рядом.

В критерии (6) k – количество интервалов в интервальном вариационном ряду;  $n_i$  – частоты интервалов ; n – объем выборки;  $p_i$  – теоретические вероятности попадания случайной величины X в интервал ( $C_{i-1}$ ;  $C_i$ );  $n \cdot p_i$  – теоретические частоты интервалов.

Для эмпирического распределения, представленного интервальным вариационным рядом, теоретические вероятности вычисляются с помощью интегральной теоремы Муавра-Лапласа

$$p_{i} = P\left(C_{i-1} \le X \le C_{i}\right) \approx \Phi\left(\frac{C_{i} - \overline{x}}{s}\right) - \Phi\left(\frac{C_{i-1} - \overline{x}}{s}\right)$$
(7)

где  $\Phi(x)$  – функция Лапласа.

Если вычисленное по выборке значение критерия  $\chi^2$  больше критического значения  $\chi^2_{kp}(1-\alpha,k-r-1)$ , то нулевая гипотеза  $H_0: X \sim N(\overline{x},s)$  отвергается (гипотеза противоречит выборочным данным). Если вычисленное значение критерия  $\chi^2 \leq \chi^2_{kp}(1-\alpha,k-r-1)$ , то нулевая гипотеза  $H_0: X \sim N(\overline{x},s)$ , принимается на уровне значимости  $\alpha = 0,05$  (гипотеза о нормальном распределении генеральной совокупности с параметрами  $a = \overline{x}$  и  $\sigma = s$  согласуется с выборочными данными).

Несмещенные точечные оценки математического ожидания  $\overline{x}$  и дисперсии генеральной совокупности *s* соответственно равны выборочной средней и исправленной выборочной дисперсии, значения которых берутся из таблицы числовых характеристик выборки (рис. 11). Эти параметры выделены желтым цветом.

Для вычисления значения статистики критерия  $\chi^2$  по формуле (6) используем интервальный вариационный ряд. Для этого к полученному ранее интервальному вариационному ряду добавим справа три столбца с заголовками: теоретические вероятности, теоретические частоты и слагаемые критерия Пирсона.

Расчет теоретических вероятностей выполним по формуле (7), для которой функция Лапласа в Excel задается формулой

$$= HOPM.CT.PAC\Pi() \tag{8}$$

Учитывая синтаксис формулы (8) в ячейке МЗ напишем формулу в соответствии с (7)

=HOPM.CT.PACΠ((G4-\$I\$54)/\$I\$58;1)-HOPM.CT.PACΠ((G3-\$I\$54)/\$I\$58;1)



Синтаксис функции НОРМ.СТ.РАСП

«Протягиваем» формулу по всем диапазонам интервального ряда. В итоговой ячейке определяем сумму теоретических вероятностей. Эта величина должна быть приближенно равна единице.

Аналогичным образом, определяем значения теоретических частот, умножая соответствующую теоретическую вероятность на объем выборки. В итоговой ячейке определяем сумму теоретических частот.

В столбце О (слагаемые критерия Пирсона) рассчитываем значения аргументов по формуле (6). Сумма рассчитанных значений, в итоговой ячейке, покажет значение критерия  $\chi^2$ .

Проверка гипотезы по критерию хи-квадрат требует расчета критического значения статистики  $\chi^2_{kp}(1-\alpha, k-r-1)$  в зависимости от уровня значимости  $\alpha$  и числа степеней свободы k-r-1 (параметр r для всех вариантов равен двум).

Расчет критического значения статистики  $\chi^2_{kp}$  осуществим с помощью функции Excel

Синтаксис функции ХИ2.ОБР.ПХ

В ячейке О13 напишем формулу =ХИ2.ОБР.ПХ(0,05;6).

Сравнивая фактическое и критическое значения статистики приходим к выводу, что на уровне значимости  $\alpha = 0,05$  нулевая гипотеза  $H_0: X \sim N(\bar{x}, s)$  о нормальном распределении генеральной совокупности с оценками параметров  $a = \bar{x} = 41,2415$  и  $\sigma = s = 5,0650$  принимаются, поскольку выполняется условие  $\chi^2 = 2,1666 < \chi^2_{kp} = 12,5916$ .

# 5. Заключение о проведенном исследовании свойств генеральной совокупности

Проведенное исследование выборки объема инновационных товаров (млн руб.) позволяет сделать ряд выводов:

1. Гистограмма частот близка по форме к кривой нормального распределения, а кумулятивная кривая к графику функции распределения нормальной случайной величины.

2. Выборочная средняя  $\overline{x} = 41,2415$ , выборочная медиана  $\overline{x}_{med} = 41,28$  и выборочная мода  $\overline{x}_{mod} = 33,71$  имеют приближенно равные значения, следовательно, эмпирическое распределение симметрично относительно выборочного среднего, что свидетельствует в пользу нормального распределения объема инновационных товаров (млн руб.).

3. Выборочные коэффициент асимметрии  $\tilde{A} = -0,0162$  и эксцесс  $\tilde{E} = -0,2219$  имеют значения близкие к нулю, что свидетельствует о нормальном распределении исследуемого признака.

4. По критерию Пирсона  $\chi^2$  статистическая гипотеза о нормальном распределении генеральной совокупности, с математическим ожиданием равным 41,2415 и средне квадратическим отклонение равным 5,0650, согласуется с выборочными данными на уровне значимости 0,05, так как вычисленное значение статистики  $\chi^2$ , равное 2,1666, меньше критического, равного 12,5916.

Таким образом, объем инновационных товаров (млн руб.) в РФ имеет нормальное распределение, в среднем ежегодный объем инновационных товаров составляет 41,2415 млн руб.



### Функция НОРМОБР или НОРМ.ОБР в зависимости от версии Excel

Описание. Возвращает обратное нормальное распределение для указанного среднего и стандартного отклонения.

Синтаксис НОРМОБР(вероятность;среднее;стандартное\_откл)

Аргументы функции:

*Вероятность* – вероятность, соответствующая нормальному распределению.

Среднее – среднее арифметическое распределения.

Стандартное\_откл – стандартное отклонение распределения.

вернуться назад

## Функция СЛЧИС()

Описание. Возвращает равномерно распределенное случайное вещественное число из отрезка [0; 1].

Синтаксис СЛЧИС()

У функции СЛЧИС нет аргументов.

Чтобы получить случайное вещественное число в диапазоне между а и b, можно использовать следующую формулу: a+(b-a)\*СЛЧИС()

вернуться назад

## Функция ОКРУГЛ

Описание. Округляет число до указанного количества дробных разрядов.

Синтаксис ОКРУГЛ(число;число\_разрядов)

Аргументы функции:

Число – округляемое числовое значение.

*Число\_разрядов* – количество дробных разрядов, до которого требуется округлить число.

вернуться к тексту

## Функция СЧЁТЕСЛИ

Описание. Подсчитывает количество ячеек, отвечающих определенному условию. Синтаксис СЧЁТЕСЛИ(где нужно искать;что нужно найти)

вернуться к тексту

## Функция ЦЕЛОЕ

Описание. Округляет число до ближайшего меньшего целого.

Синтаксис ЦЕЛОЕ(число)

Аргументы функции:

*Число* – вещественное число, округляемое до ближайшего меньшего целого.

вернуться к тексту

## Функция LOG10

Описание. Возвращает десятичный логарифм числа.

Синтаксис LOG10(число)

Аргументы функции:

*Число* – положительное вещественное число, для которого вычисляется десятичный логарифм.

вернуться к тексту

## Функция ЧАСТОТА

Описание. Вычисляет частоту появления значений в интервале значений и возвращает массив чисел.

Синтаксис ЧАСТОТА(массив\_данных;массив\_интервалов)

Аргументы функции:

*Массив\_данных* – множество числовых данных, для которых вычисляются частоты.

*Массив\_интервалов* – множество интервалов, в которые группируются значения аргумента «массив\_данных».

вернуться к тексту

#### Функция НОРМ.СТ.РАСП в зависимости от версии Excel

Описание. Предназначена для расчета значений плотности вероятности или значений интегральной функции распределения вероятностей по нормированным данным. Синтаксис HOPM.CT.PACП(z;интегральная)

Аргументы функции:

Z- значение, для которого строится распределение.

Интегральная – логическое значение, определяющее форму функции.

Если аргумент «интегральная» имеет значение ИСТИНА (или 1), функция НОРМ.СТ.РАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ (или 0), возвращается весовая функция распределения.

### Важно!

В младших версиях Excel используется функция **НОРМСТРАСП(z)**, которая возвращает функцию распределения стандартной нормальной величины.

вернуться к тексту

### Функция ХИ2.ОБР.ПХ или ХИ2ОБР в зависимости от версии Excel

Синтаксис ХИ2.ОБР.ПХ(вероятность;степени\_свободы)

Описание. Рассчитывает критическое значение критерия при заданной вероятности справа. Функция по сути дублирует функцию ХИ2.ОБР. Но для ХИ2.ОБР.ПХ можно сразу указывать уровень  $\alpha$ , а не вычитать его из 1.

Аргументы функции:

Вероятность – вероятность, связанная с распределением хи-квадрат.

Степени\_свободы – число степеней свободы.

вернуться к тексту

#### Контрольные вопросы

1. Сформулируйте понятия генеральной совокупности и выборки.

2. В чем заключается суть выборочного метода?

3. Какую выборку называют репрезентативной?

4. Что представляет собой точечный вариационный ряд?

5. Как строится интервальный вариационный ряд?

6. Что понимается под эмпирическим распределением и с помощью чего оно может быть представлено?

7. Как определяется эмпирическая функция распределения?

8. Как строится гистограмма частот?

9. Приведите числовые характеристики положения выборки.

10. Сформулируйте понятия выборочной моды и медианы.

11. Приведите числовые характеристики вариации выборки.

12. Как находятся выборочные дисперсия и среднее квадратическое отклонение?

13. Какие бывают оценки параметров распределения генеральной совокупности?

14. В чем заключаются свойства несмещенности, состоятельности и эффективности точечных оценок?

26. Сформулируйте понятие доверительного интервала и доверительной вероятности.

27. Как изменяется доверительный интервал с увеличением доверительной вероятности?

28. Какие могут быть ошибки при проверке статистических гипотез?

29. Как определяется мера расхождения теоретического (предполагаемого) и эмпирического распределения в критерии согласия Пирсона?

30. Для проверки каких гипотез применяются критерии согласия?